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Obtaining accurate approximations for derivatives is important for many scientific applica-
tions in such areas as fluid mechanics and chemistry as well as in visualization applica-
tions. In this paper we discuss techniques for computing accurate approximations of
high-order derivatives for discontinuous Galerkin solutions to hyperbolic equations related
to these areas. In previous work, improvement in the accuracy of the numerical solution
using discontinuous Galerkin methods was obtained through post-processing by convolu-
tion with a suitably defined kernel. This post-processing technique was able to improve the
order of accuracy of the approximation to the solution of time-dependent symmetric linear
hyperbolic partial differential equations from order kþ 1 to order 2kþ 1 over a uniform
mesh; this was extended to include one-sided post-processing as well as post-processing
over non-uniform meshes. In this paper, we address the issue of improving the accuracy
of approximations to derivatives of the solution by using the method introduced by
Thomée [19]. It consists in simply taking the ath-derivative of the convolution of the solu-
tion with a sufficiently smooth kernel. The order of convergence of the approximation is
then independent of the order of the derivative, jaj. We also discuss an efficient way of com-
puting the approximation which does not involve differentiation but the application of
simple finite differencing. Our results show that the above-mentioned approximations to
the ath-derivative of the exact solution of linear, multidimensional symmetric hyperbolic
systems obtained by the discontinuous Galerkin method with polynomials of degree k con-
verge with order 2kþ 1 regardless of the order jaj of the derivative.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Obtaining accurate approximations of derivatives is important in many applications arising in such areas as continuum
mechanics, fluid mechanics and chemistry. It is also important in visualization for volume classification shading [14]. Moti-
vated by this variety of practical applications, we study the problem of obtaining accurate approximations of high-order
derivatives of the solution having computed an approximation of the solution only.

In [2], a technique to enhance the approximation to the solution was introduced in the framework of finite element meth-
ods for second-order elliptic problems. It consisted of a simple convolution with a kernel whose support had a diameter of
the order of the element size; locally uniform meshes were required. It allowed for the post-processed approximation to ob-
tain the same order of convergence of the negative-order norms as the error. Thus, if polynomials of degree k were used to
define the numerical approximation, the post-processed solution converged with order 2k. This approach was later applied
to discontinuous Galerkin methods for hyperbolic problems in [5,6] for uniform meshes, in [15,16] for piecewise-uniform
meshes, and in [12] for non-uniform meshes. When polynomials of degree k are used, the post-processed solution was
. All rights reserved.
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shown to converge with order 2kþ 1 in the first two cases. In [15], approximations for the derivatives were obtained by sim-
ply differentiating the above-mentioned convolution. However, the corresponding order of convergence eventually began to
diminish as the order of the derivative increased. In this paper, we show how to avoid this unpleasant phenomenon by the
application of the approach proposed by Thomée [19]; it results in approximate derivatives converging with order 2kþ 1
independently of the order of the derivative. We do this in the framework of discontinuous Galerkin approximations for
hyperbolic problems.

The outline of this paper is as follows. In the next section, we introduce our model problem, namely, the one-dimensional
transport equation, as well as its discontinuous Galerkin approximation in space. In Section 3, we discuss Thomée’s tech-
nique for derivative post-processing and prove that the approximate derivatives converge with order 2kþ 1 regardless of
the order of the derivative. We then describe how to efficiently implement the corresponding post-processors. We end by
briefly indicating how to extend these results to general linear, multidimensional hyperbolic systems. In Section 4, we pres-
ent numerical results demonstrating the performance of the post-processing. We end with some concluding remarks.

2. The model problem and its discretization

The discontinuous Galerkin method continues to gain in popularity due to flexibility in adaptivity, simple treatment of
boundary conditions, ability to handle complicated geometries, and a local nature that makes it easy to implement in par-
allel. It has particular advantages when it is used to solve hyperbolic conservation laws and is well studied [7,8,4,3,9–11]. For
the sake of simplicity, we take as a model problem the simple transport equation
ut þ ðauÞx ¼ 0 in R� ð0; TÞ; ð2:1aÞ
uð�; t ¼ 0Þ ¼ uoð�Þ on R; ð2:1bÞ
where a is a positive constant.
We start by defining a uniform mesh Ii ¼ xi � h

2 ; xi þ h
2

� �
; i 2 Z, where h is the uniform element size. Next, we choose an

approximation space, Vh, to be the space of piecewise polynomials of degree less than or equal to k on each interval Ii.
The approximate solution uh given by the DG method is taken in the space Vh at each time, and is set equal to the L2-pro-
jection of the initial data uo at time t ¼ 0. For t > 0, it is determined as the solution of the formulation
Z

Ii

ðuhÞtv dx ¼
Z

Ii

auhvx dx� abuiþ1=2v�iþ1=2 þ aûi�1=2vþi�1=2;
for all v 2 Vh. Here ûiþ1=2 :¼ uh x�iþ1=2

� �
is nothing but the classic upwinding numerical trace. The time integration is per-

formed using a third order Strong Stability Preserving Runge–Kutta scheme [13,18].
The discontinuous Galerkin approximation uh will produce a ðkþ 1Þth order accurate approximation for sufficiently

smooth initial data uo. However, as pointed out above, the post-processed solution
u�ðxÞ ¼ Km;‘
h H uhð�; TÞ

� �
ðxÞ;
where the convolution kernel is of the form
Km;‘
h ðxÞ ¼

1
h

Xk

c¼�k

cm;‘
c wð‘Þ

x
h
� c

� �
;

and T is the final time of the numerical approximation, converges with order 2kþ 1, again, when the initial data is smooth
enough; see [5,6,15,16,12]. For the discontinuous Galerkin approximation, m is taken to be 2kþ 2, and ‘ ¼ kþ 1.

The kernel Km;‘
h is such that Km;‘

h H u ¼ u for polynomials u of degree 2k; this is the only condition the coefficients cc must ver-
ify. Note that the kernel is supported in at most 2kþ 2 elements; this renders the evaluation of the convolution computationally
efficient. Finally, note that the function wð‘Þ is the B-spline obtained by convolving the characteristic function of the interval
� 1

2 ;
1
2

� �
with itself ‘� 1 times. As a consequence, the mapping x # Km;‘

h H uhð�; TÞ
� �

ðxÞ is a Ck�1ðRÞ-function. We can thus take
da

dxa Km;‘
h H uhð�; TÞ

� �
ðxÞ;
as an approximation to dau
dxa ðx; TÞ for a 6 k� 1, or even for a ¼ k; see [16]. However, the order of accuracy of this approxima-

tion eventually begins to decrease with the order of the derivative; moreover, the oscillations in the error increase. Next we
show that this can be avoided by using the approach devised by Thomée [19].

3. Post-processing for derivative information

3.1. Derivative of the post-processed solution

The first approach was presented in [15]. This method calculates directly the derivative of the post-processed solution.
That is,
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da

dxa Km;‘
h H uhð�; TÞ

� �
¼ da

dxa

1
h

Xk

c¼�k

cm;‘
c

Z 1

�1
wð‘Þ

x� y
h
� c

� �
uhðy; TÞdy

 !
: ð3:1Þ
The support width of the post-processor is 2k0 þ 1, where k0 ¼ d3kþ1
2 e. This support width does not increase with taking higher

derivatives, but the accuracy decreases and oscillations in the error increase. For the first derivative over a uniform mesh, we
obtain the same ð2kþ 1Þth order accuracy that we obtained for the solution. For the second derivative, we obtain ð2kÞth or-
der accuracy. In general we obtain ð2kþ 2� aÞth-order accuracy for the a derivative.

3.2. Thomée’s approach

In [19], Thomée found that the function
da

dxa Kaþm;‘
h H uhð�; TÞ

� �
; ð3:2aÞ
is an approximation to dau
dxa ðx; TÞ whose order or convergence is independent of a. Here, the kernel Kaþm;‘

h is of the form
Kaþm;‘
h ðxÞ ¼ 1

h

X
c2Z

caþm;‘
c wðaþmÞ x

h
� c

� �
; ð3:2bÞ
and is such that
Kaþm;‘
h H u ¼ u for polynomials of degree m� 1: ð3:2cÞ
In other words, to maintain the order of convergence independent of the order of the derivative, it is enough to work with a
kernel defined in term of smoother B-splines.

He also noted that, since
da

dxa waþm ¼ @a
hw

m;
where @hvðxÞ :¼ ðvðxþ h=2Þ � vðx� h=2ÞÞ=h, we have that
da

dxa Kaþm;‘
h H uhð�; TÞ

� �
¼ eK a;m;‘

h H @a
huh; ð3:3aÞ

eK a;m;‘
h ðxÞ :¼ 1

h

X
c2Z

caþm;‘
c wð‘Þ

x
h
� c

� �
: ð3:3bÞ
This implies that, once we compute the convolution of translations of the B-spline wð‘Þ with uh, the above approximation can
be readily computed for any a.

3.3. Theoretical considerations

Here, we obtain an estimate of the L2-error of the approximation
eaðx; TÞ :¼ da

dxa uðx; TÞ � da

dxa ðK
aþm;‘
h H uhð�; TÞÞðxÞ;
on a domain X0. The result is the following.

Theorem 1. Let uh be the approximate solution given by the DG method for the model problem (2.1). Assume that the initial data
uo is very smooth. Then
keað�; TÞkL2ðX0Þ 6 Chminfm;2kþ1;kþ‘þ1g
;

where C depends upon the smoothness of the solution.

This result states that the order of convergence of 2kþ 1 is achieved provided we take m P 2kþ 1 and ‘ P k.

Proof. We follow Thomée [19]. For the sake of clarity, we drop the argument ðx; TÞ; so instead of writing eaðx; TÞ, we simply
write ea. We have
ea ¼
dau
dxa �

da

dxa Kaþm;‘
h H u

� �� �
þ da

dxa Kaþm;‘
h H ðu� uhÞ

� �
¼ T1 þ T2;
where
T1 :¼ dau
dxa � Kaþm;‘

h H
dau
dxa ;

T2 :¼ da

dxa Kaþm;‘
h

� �
H ðu� uhÞ;



J.K. Ryan, B. Cockburn / Journal of Computational Physics 228 (2009) 8642–8664 8645
by a well-known property of the convolution. Hence
keakL2ðX0Þ 6 kT1kL2ðX0Þ þ kT2kL2ðX0Þ:
Next, we estimate each of the terms on the right-hand side. To do that, we use very different properties of the post-processor.
Indeed, the first term is estimated by using the approximation properties of the kernel Kaþm;‘

h , that is, that it reproduces by
convolution polynomials of degree m� 1. This term will be bounded only in terms of the smoothness of the exact solution
u. On the other hand, the second term is estimated by using the smoothness of the kernel, that is, this is defined in terms of
the B-spline wðaþmÞ. This term will be bounded in terms of negative-order norms of the approximation u� uh.

Let us estimate the first term. If the function u is sufficiently smooth, for example, if its derivatives up to the order aþ m
are in L2ðX1Þ where X1 strictly contains X0, then the term T1 can be shown to be of the order of hm by property (3.2c):
kT1kL2ðX0Þ 6 Chm daþmu
dxaþm

���� ����
L2ðX1Þ

:

The estimate of T2 is more delicate. By (3.3a),
T2 ¼ eK a;m;‘
h H @a

hðu� uhÞ
� �

;

and, after a few technicalities described in detail in [19], we get
kT2kL2ðX0Þ 6 C
X
jbj6‘
k@aþb

h ðu� uhÞkH�‘ðX0Þ:
As pointed out above, this term can be estimated in terms of negative-order norms of the error u� uh. Note that until now,
we have not used any information about the approximation uh. In the special case under consideration, we have that
kT2kL2ðX0Þ 6 Chminf2kþ1;kþ‘þ1g
;

where C depends upon the smoothness of the solution. In [5], the order of convergence proven was only
minf2kþ 1; kþ ‘þ 1=2g. However, for our model problem, it is not difficult to prove that 1/2 can be replaced by 1. As a con-
sequence, we have that
keakL2ðX0Þ 6 Chminfm;2kþ1;kþ‘þ1g
:

This completes the proof. h
3.4. Implementation details for general kernels

Now that we have shown that we can obtain the same order of accuracy for the derivative of the post-processed solution
as we can for the post-processed solution itself, we concentrate on some implementation details for the derivative post-
processor.

Here we assume that we know the coefficients defining the convolution kernel and obtain a convenient expression for our
approximation to the ath-derivative of u. The expression is written in terms of the following representation of the approx-
imate solution at time t 2 ½0; T�:
uhðx; tÞ ¼
XN

i¼1

Xk

m¼0

ui
mðtÞ/m

x
h
� i

� �
;

where f/mg
k
m¼0 is a basis of the space of polynomials of degree k on the interval [�1/2,1/2].

Proposition 1
da

dxa Kaþm;‘
h H uhð�; TÞ

� �
¼
XN

i¼1

Xk

m¼0

ui
mðTÞU

a;m;‘
m

x
h
� i

� �
;

where
Ua;m;‘
m ðgÞ :¼

X
c2Z

caþm;‘
c @a

hh
‘
mðg� cÞ;

h‘mðfÞ :¼
Z 1=2

�1=2
wð‘Þðf� zÞ/mðzÞdz:
Proof. By the definition of the convolution kernel (3.3), we have
da

dxa Kaþm;‘
h H uhð�; TÞ

� �
¼ eK a;m;‘

h H @a
huhð�; TÞ ¼

1
h

X
c2Z

caþm;‘
c wð‘Þ

�
h
� c

� �
H @a

huhð�; TÞ;
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and inserting the expression for the approximate solution,
da

dxa Kaþm;‘
h H uhð�; TÞ

� �
¼
X
c2Z

caþm;‘
c

XN

i¼1

Xk

m¼0

ui
mðTÞ@

a
hC‘

i;m;cðxÞ;
where
C‘
i;m;cðxÞ :¼ wð‘Þ

�
h
� c

� �
H /m

�
h
� i

� �� �
ðxÞ ¼

Z
R

wð‘Þ
x� y

h
� c

� �
/m

y
h
� i

� �
dy ¼

Z 1=2

�1=2
wð‘Þ

x
h
� z� i� c

� �
/mðzÞdz;
and so
C‘
i;m;cðxÞ ¼ h‘m

x
h
� i� c

� �
:

This implies that
da

dxa Kaþm;‘
h H uhð�; TÞ

� �
¼
XN

i¼1

Xk

m¼0

ui
mðTÞ

X
c2Z

caþm;‘
c @a

hh
‘
m

x
h
� i� c

� �
;

and the result follows. This completes the proof. h

Let us find a more convenient way of evaluating the function Ua;m;‘
m . Since we have
Ua;m;‘
m ðgÞ ¼

X
c2Z

caþm;‘
c @a

hh
‘
mðg� cÞ ¼

X
c2Z

caþm;‘
c h�aXa

j¼0

a
j

� �
ð�1Þjh‘m g� cþ a

2
� j

� �
;

we get that
Ua;m;‘
m ðgÞ ¼

X
lþa

22Z
da;m;‘

l h‘mðg� lÞ; ð3:4aÞ

da;m;‘
l :¼ h�aXa

j¼0

a
j

� �
ð�1Þjcaþm;‘

lþa
2�j: ð3:4bÞ
We see that for odd-order derivatives the function h‘m must be evaluated at the points of the form gþ 1
2þ i for i 2 Z whereas

for even-order derivatives it has to be evaluated at points of the form gþ i for i 2 Z. For odd derivatives, we perform a change
of variables in order to avoid having to calculate the approximation at the element boundaries.

Note also that the function h‘m is a piecewise polynomial of degree ‘þm whose support is the interval ½�‘=2� 1; ‘=2þ 1�.
It is possible to evaluate the integral defining this function by using Gauss quadratures exact for polynomials of degree ‘þm.
Of course, special care has to be taken to use them across the points in which the function changes its polynomial represen-
tation. However, the results contained in this paper use an exact integral calculation.

We also remind the reader that it is possible to evaluate the B-spline wð‘Þ using the recurrence relation
wð‘þ1ÞðxÞ ¼ 1
‘

xþ ‘þ 1
2

� �
wð‘Þ xþ 1

2

� �
þ ‘þ 1

2
� x

� �
wð‘Þ x� 1

2

� �	 

for ‘ P 1; ð3:5aÞ
where
wð1Þ ¼ 1; x 2 � 1
2 ;

1
2

� �
;

0; otherwise;

(
ð3:5bÞ
see [17].

3.5. The computation of even kernels

Next, we describe an implementation of Thomée’s [19] computation of kernels Ka;m;‘
h in the case ‘ ¼ 2kþ 1 where the

approximation polynomial degree, k, is even; they turn out to be even functions. Although non-even kernels are useful in
the context of piecewise-uniform meshes and for post-processing up to the boundary, see [15,16], an easy and systematic
way of computing them, like the one we present next for even kernels, remains to be developed.

Proposition 2. The non-zero coefficients of the kernel Ka;m;2kþ1
h of the form (3.2b) satisfying (3.2c) are
caþm;2kþ1
c :¼ ð�1Þc

Xk�1

j¼jcj

2j

j� c

� �
ð�4Þjnaþm;2kþ1

j for jcj < k:
The values naþm;2kþ1
j

n ok�1

j¼0
are computed by using the recurrence



Table 4
The L2-e
sine ini
order sp

Mesh

Linea
First

P1

40
60
80
100

P2

40
60
80
100

P3

40
60
80
100
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nnþ1;2kþ1
j :¼

Xj

m¼0

nn;2kþ1
j�m n1;2kþ1

m for j ¼ 0; . . . ; k� 1;
where n1;2kþ1
j

n ok�1

j¼0
are the non-zero coefficients of the Taylor polynomial of order 2k� 2 of the function ðarcsins=sÞ around s ¼ 0,

that is,
arcsin s
s

� �
¼
Xk�1

j¼1

n1;2kþ1
j s2j þOðs2kÞ:
Note that, since caþm;2kþ1
�c ¼ caþm;2kþ1

c , we have that the kernel Kaþm;2kþ1
h is an even function, as claimed.

Proof. By Lemma 1 in [19], we only have to show that
Xk�1

j¼0

naþm;2kþ1
j sin

r
2

� �2j
¼

Xk�1

c¼�kþ1

caþm;‘
c e�irc;
where naþm;2kþ1
j

n ok�1

j¼0
are the non-zero coefficients of the Taylor polynomial of order 2k� 2 of the function ðarcsin s=sÞaþm

around s ¼ 0. But
Xk�1

j¼0

naþm;2kþ1
j sin

r
2

� �2j
¼
Xk�1

j¼0

naþm;2kþ1
j

eir2 � e�ir2

2i

� �2j

¼
Xk�1

j¼0

naþm;2kþ1
j ð�4Þ�j

X2j

m¼0

2j

2j�m

� �
ð�1Þm e�irðj�mÞ

¼
Xk�1

j¼0

naþm;2kþ1
j ð�4Þ�j

Xj

c¼�j

2j

jþ c

� �
ð�1Þm e�irc

¼
Xk�1

c¼�kþ1

Xk�1

j¼jcj
naþm;2kþ1

j ð�4Þ�j 2j
jþ c

� �
ð�1Þj�c

 !
e�irc ¼

Xk�1

c¼�kþ1

caþm;‘
c e�irc:
It remains to prove the statement about the coefficients nn;2pþ1
j

n ok�1

j¼0
. We proceed by induction on n. For n ¼ 1 the statement

is true by construction. Now assume that the statement is true for n and let us prove it also holds for nþ 1. We have
arcsin s
s

� �nþ1

¼ arcsin s
s

� �n arcsin s
s

� �
¼

X1
j¼0

vn
j s

2j

 ! X1
j¼0

v1
j s

2j

 !
¼
Xk�1

j¼0

Xj

m¼0

vn
j�mv1

m

 !
s2j þOðs2pÞ

¼
Xp�1

j¼0

Xj

m¼0

nn;2kþ1
j�m n1;2kþ1

m

 !
s2j þOðs2kÞ;
.1
rrors for the first derivative of the discontinuous Galerkin approximation as well as post-processed derivatives for the linear convection equation with

tial conditions. @xðK H uhÞ represents the derivative of the post-processed solution, and eK � @huh represents derivative post-processing using higher-
lines.

@xuh @xðK H uhÞ eK H @huh

L2-error Order L2-error Order L2-error Order

r convection equation ut þ ux ¼ 0
derivatives

3.6955E�02 – 4.8111E�04 – 6.1640E�04 –
2.4663E�02 1.00 1.4230E�04 3.00 1.7998E�04 3.04
1.8504E�02 1.00 5.9967E�05 3.00 7.5334E�05 3.03
1.4805E�02 1.00 3.0681E�05 3.00 3.8383E�05 3.02

8.7198E�04 2.00 1.5408E�07 5.28 2.4823E�06 4.98
3.8764E�04 2.00 1.8998E�08 5.16 3.2752E�07 5.00
2.1807E�04 2.00 4.4039E�09 5.13 7.7761E�08 5.00
1.3957E�04 2.00 1.4399E�09 5.01 2.5485E�08 5.00

1.3046E�05 – 2.9092E�10 – 1.8998E�08 –
3.8662E�06 3.00 1.2051E�11 7.85 1.1176E�09 6.99
1.6305E�06 3.00 1.3729E�12 7.55 1.4946E�10 6.99
8.3518E�07 3.00 2.9673E�13 6.86 3.1371E�11 7.00
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by the inductive hypothesis, and so
Table 4
The L2-
with si
higher-

Mes

Linea
Seco

P1

40
60
80
100

P2

40
60
80
100

P3

40
60
80
100

Table 4
The L2-
sine ini
order sp

Mes

Linea
Third

P1

40
60
80
100

P2

40
60
80
100

P3

40
60
80
100
arcsin s
s

� �nþ1

¼
Xk�1

j¼0

nnþ1;2kþ1
j s2j þOðs2kÞ;
by the recurrence relation. This completes the proof. h
3.6. Practical implementation

Although the previous sections discuss general implementation, in practice we can choose specific points within an ele-
ment in which to evaluate the post-processed solution and its derivatives, such as the Gauss points, and perform the inte-
gration exactly. Since the convolution kernel is translation invariant for a uniform mesh, we compute the post-processing
matrix once and store the information for future use. The computational cost is then negligible.
.2
errors for the second derivative of the discontinuous Galerkin approximation as well as post-processed derivatives for the linear convection equation
ne initial conditions. @2

x ðK H uhÞ represents the derivative of the post-processed solution, and eK � @2
huh represents derivative post-processing using

order splines.

h @2
x uh @2

x ðK H uhÞ eK � @2
huh

L2-error Order L2-error Order L2-error Order

r convection equation ut þ ux ¼ 0
nd derivatives

7.0711E�01 – 1.1623E�03 – 4.8828E�04 –
7.0711E�01 – 4.9224E�04 2.13 1.4367E�04 3.02
7.0711E�01 – 2.7193E�04 2.06 6.0382E�05 3.01
7.0711E�01 – 1.7255E�04 2.04 3.0844E�05 3.01

3.3919E�02 – 3.3093E�07 – 2.0432E�07 –
2.2618E�02 1.00 6.1531E�08 4.15 2.3419E�08 5.34
1.6965E�02 1.00 1.9124E�08 4.06 5.1904E�09 5.24
1.3572E�02 1.00 7.7776E�09 4.03 1.6459E�09 5.15

8.5100E�04 – 2.9392E�10 – 6.5174E�10 –
3.7831E�04 2.00 1.2599E�11 7.77 2.6211E�11 7.93
2.1278E�04 2.00 1.5210E�12 7.35 2.7934E�12 7.78
1.3621E�04 2.00 3.4276E�13 6.68 5.3526E�13 7.40

.3
errors for the third derivative of the discontinuous Galerkin approximation as well as post-processed derivatives for the linear convection equation with
tial conditions. @3

x ðK H uhÞ represents the derivative of the post-processed solution, and eK � @3
huh represents derivative post-processing using higher-

lines.

h @3
x uh @3

x ðK H uhÞ eK � @3
huh

L2-error Order L2-error Order L2-error Order

r convection equation ut þ ux ¼ 0
derivatives

3.3547E�01 – 3.6955E�02 – 6.9814E�04 –
3.3547E�01 – 2.4663E�02 1.00 2.0344E�04 3.04
3.3547E�01 – 1.8504E�02 1.00 8.5055E�05 3.03
3.3547E�01 – 1.4805E�02 1.00 4.3304E�05 3.03

7.3474E�02 – 1.0413E�05 – 3.6668E�06 –
5.9998E�02 0.50 3.0844E�06 3.00 4.8441E�07 4.99
5.1962E�02 0.50 1.3011E�06 3.00 1.1506E�07 5.00
4.6477E�02 0.50 6.6617E�07 3.00 3.7719E�08 5.00

1.1638E�02 – 1.9562E�09 – 2.9704E�08 –
7.7595E�03 1.00 2.5500E�10 5.03 1.7491E�09 6.99
5.8198E�03 1.00 6.0458E�11 5.00 2.3398E�10 6.99
4.6559E�03 1.00 1.9808E�11 5.00 4.9118E�11 7.00



J.K. Ryan, B. Cockburn / Journal of Computational Physics 228 (2009) 8642–8664 8649
Alternatively, as discussed in [15], the computational implementation of the post-processed solution uses small matrix–
vector multiplications with the post-processed solution consists of a sum of these small matrix–vector multiplications.
Computing the derivative of the post-processed solution is similar. This can be extended to computation of the derivatives
as presented in Proposition 1. That is, to find the derivative of the post-processed solution, we have
Table 4
The L2-
with si
higher-

Mesh

Linea
Four

P1

40
60
80
100

P2

40
60
80
100

P3

40
60
80
100

Fig. 4.1
conditio
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� i� c
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; ð3:6Þ
where
Pk

c¼�kC‘
i;m;c

x
h� i� c
� �

is the post-processed matrix evaluated at the chosen points within the element. The general for-
mula is given by
.4
errors for the fourth derivative of the discontinuous Galerkin approximation as well as post-processed derivatives for the linear convection equation
ne initial conditions. @4

x ðK H uhÞ represents the derivative of the post-processed solution, and eK � @4
huh represents derivative post-processing using

order splines.

@4
x uh @4

x ðK H uhÞ eK � @4
huh

L2-error Order L2-error Order L2-error Order

r convection equation ut þ ux ¼ 0
th derivatives

– – – – 4.9896E�04 –
– – – – 1.4578E�04 3.03
– – – – 6.1053E�05 3.03
– – – – 3.1119E�05 3.02

– – 7.7623E�04 – 2.8322E�07 –
– – 3.4507E�04 2.00 3.0383E�08 5.51
– – 1.9411E�04 2.00 6.4322E�09 5.40
– – 1.2424E�04 2.00 1.9717E�09 5.30

– – 8.5394E�08 – 1.235E�09 –
– – 1.6870E�08 4.00 4.8581E�11 7.98
– – 5.3381E�09 4.00 4.8795E�12 7.99
– – 2.1865E�09 4.00 8.4144E�13 7.88
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. Pointwise errors for the post-processed first derivatives for P2-polynomial approximation to the linear convection equation with sine initial
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This is a polynomial of degree 2kþ 1� a. The support of this method remains the same as for the post-processed solution
itself, that is, 2k0 þ 1 where k0 ¼ d3kþ1
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For Thomée’s method, we again can pre-compute the derivative post-processing coefficients, similarly using the same
post-processing matrix. Due to the nature of the B-spline recurrence relation, this means that we maintain a post-processed
polynomial of degree 2kþ 1 for all derivatives. However, the support increases in size with the new coefficients being given
in formula (3.4b). For example, for the first and second derivatives, the support is 2k0 þ 3, the third and fourth derivatives
have a support of 2k0 þ 5. In this manner, the support of the derivative post-processed solution widens with successive deriv-
atives and renders the post-processor as being less local.
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Fig. 4.4. Pointwise errors for the post-processed fourth derivatives for P2-polynomial approximation to the linear convection equation with sine initial
conditions.

Table 4.5
The L2-errors for the P4-piecewise polynomial projection of sinðxÞ; x 2 ð0; 2pÞ; for the first four derivatives. Shown are the errors for the projection onto a
piecewise polynomial space as well as the post-processed derivatives. @a

x ðK H uhÞ represents the ath-derivative of the post-processed solution, and eK � @a
h uh

represents ath derivative post-processing using higher-order splines.

P4

Mesh @a
x uh @a

x ðK H uhÞ eK H @a
h uh

L2-error Order L2-error Order L2-error Order

Piecewise polynomial projection for sinðxÞ; x 2 ð0;2pÞ
First derivatives
40 1.1024E�07 – 2.2035E�12 – 1.5131E�10 –
60 2.1779E�08 4.00 3.8429E�14 9.99 3.9630E�12 8.98
80 6.8915E�09 4.00 2.1684E�15 9.99 2.9827E�13 8.99
100 2.8228E�09 4.00 2.3304E�16 10.00 4.0078E�14 9.00

Second derivatives
40 1.2317E�05 – 2.2035E�12 – 4.9287E�12 –
60 3.6500E�06 3.00 3.8430E�14 9.99 8.6042E�14 9.98
80 1.5400E�06 3.00 2.1685E�15 9.99 4.8566E�15 9.99
100 7.8845E�07 3.00 2.3306E�16 10.00 5.2204E�16 10.00

Third derivatives
40 8.1074E�04 – 2.2054E�12 – 2.4470E�10 –
60 3.6038E�04 2.00 3.8934E�14 9.96 6.4149E�12 8.98
80 2.0273E�04 2.00 2.3297E�15 9.79 4.8298E�13 8.99
100 1.2975E�04 2.00 2.9424E�16 9.27 6.4906E�14 8.99

Fourth derivatives
40 3.2055E�02 – 5.3486E�12 – 9.6359E�12 –
60 2.1373E�02 1.00 4.1449E�13 6.31 1.6838E�13 9.98
80 1.6031E�02 1.00 7.3020E�14 6.04 9.5076E�15 9.99
100 1.2825E�02 1.00 1.9101E�14 6.01 1.4455E�15 8.44
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3.7. Extensions

In [5], the post-processing of the solutions of finite element methods for symmetric linear hyperbolic problems was de-
scribed. Those results can be easily extended to approximations of derivatives by proceeding as indicated in [19]. Let us simply
point out that the corresponding kernels are a tensor product of the one-dimensional kernels we have described. The results we
have so far discussed for the simple model problem (2.1b) can thus be readily extended to the multidimensional case.

In particular, under suitable conditions on the exact solution, if the discontinuous Galerkin method with polynomials of
degree k in each component is used on uniform Cartesian grids, the order of convergence of 2kþ 1 is obtained independent
of the order of the derivative.
4. Numerical examples

In the following examples, we present numerical results demonstrating the effectiveness of our two methods for deriv-
ative calculation. We demonstrate that the first method of taking the derivative of the post-processed solution gives order
Table 4.6
The L2-errors for the first derivative of the discontinuous Galerkin approximation as well as post-processed derivatives for the variable coefficient equation with
sine initial conditions. @xðK H uhÞ represents the derivative of the post-processed solution, and eK � @huh represents derivative post-processing using higher-
order splines.

Mesh @xuh @xðK H uhÞ eK � @huh

L2-error Order L2-error Order L2-error Order

One-dimensional variable coefficient equation
First derivatives

P1

40 3.7026E�02 – 1.7138E�04 – 2.4485E�04 –
60 2.4682E�02 1.00 5.1314E�05 2.97 7.3616E�05 2.96
80 1.8511E�02 1.00 2.1718E�05 3.00 3.1254E�05 2.98
100 1.4809E�02 1.00 1.1136E�05 3.00 1.6059E�05 2.98

P2

40 8.7240E�04 – 5.5069E�08 – 2.4411E�06 –
60 3.8775E�04 2.00 6.9067E�08 5.12 3.2245E�06 4.99
80 2.1811E�04 2.00 1.6903E�09 5.03 7.6554E�08 4.99
100 1.3959E�04 2.00 5.8972E�09 4.72 2.5074E�07 5.00

P3

40 1.3040E�05 – 2.7510E�10 – 1.8993E�08 –
60 3.8650E�06 3.00 1.0646E�11 8.02 1.1171E�09 6.99
80 1.6308E�06 3.00 1.0519E�12 8.05 1.4928E�10 7.00
100 8.3504E�07 3.00 1.9462E�13 7.56 3.1288E�11 7.00

Table 4.7
The L2-errors for the second derivative of the discontinuous Galerkin approximation as well as post-processed derivatives for the variable coefficient equation
with sine initial conditions. @2

x ðK H uhÞ represents the derivative of the post-processed solution, and eK � @2
huh represents derivative post-processing using

higher-order splines.

Mesh @2
x uh @2

x ðK H uhÞ eK � @2
huh

L2-error Order L2-error Order L2-error Order

One-dimensional variable coefficient equation
Second derivatives

P1

40 7.0711E�01 – 1.1045E�03 – 3.1147E�03 –
60 7.0711E�01 – 4.8090E�04 2.05 9.5132E�04 2.93
80 7.0711E�01 – 2.6834E�04 2.03 4.0472E�04 2.97
100 7.0711E�01 – 1.7107E�04 2.02 2.0788E�04 2.99

P2

40 3.3923E�02 – 3.2544E�07 – 1.4294E�07 –
60 2.2619E�02 1.00 6.1855E�08 4.10 1.7735E�08 5.15
80 1.6966E�02 1.00 1.9310E�08 4.05 4.2872E�09 4.94
100 1.3573E�02 1.00 7.8612E�09 4.03 1.4798E�09 4.77

P3

40 8.5086E�04 – 5.4989E�10 – 6.8195E�10 –
60 3.7826E�04 2.00 1.2133E�11 9.41 2.4965E�11 8.16
80 2.1279E�04 2.00 1.4208E�12 7.46 2.5404E�12 7.94
100 1.3620E�04 2.00 3.8898E�13 5.81 4.9805E�13 7.30
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accuracy of 2kþ 2� a. Although the support size of the post-processor does not increase with successive derivatives, the
amplitude of the oscillations increase. In the method introduced in this paper, we increase the post-processor support size
while maintaining the same order of accuracy as the post-processed solution, that is 2kþ 1. In our study, we present the
results for the first and second derivatives of the given linear hyperbolic equation. For one-dimensional examples, we also
present results for the third and fourth derivative. We also provide a discussion of the P4-polynomial case. Afterwards, we
discuss the benefits of using the two methods.

A simple upwind flux for the discontinuous Galerkin solution was used. The choice of flux does not affect the accuracy of
the results of the post-processed solution, since the proofs are for linear hyperbolic equations. These results were initially
presented in [6]. Additionally, for simplicity, we use periodic boundary conditions in all examples. The plots of the pointwise
errors for the DG solution are not presented in order to focus on the comparison of the two derivative methods. However, for
non-periodic boundary conditions, we speculate that we would use a one-sided kernel similar to that used in [16]. Improving
this one-sided kernel for both the post-processed solution as well as its derivatives is a subject of on going work. We also
note that results using P3- and P4-polynomials required the use of a multiprecision package [1].
Table 4.8
The L2-errors for the third derivative of the discontinuous Galerkin approximation as well as post-processed derivatives for the variable coefficient equation
with sine initial conditions. @3

x ðK H uhÞ represents the derivative of the post-processed solution, and eK � @3
huh represents derivative post-processing using

higher-order splines.

Mesh @3
x uh @3

x ðK H uhÞ eK � @3
huh

L2-error Order L2-error Order L2-error Order

One-dimensional variable coefficient equation
Third derivatives

P1

40 – – 3.7043E�02 – 9.4726E�04 –
60 – – 2.4685E�02 1.00 2.9798E�04 2.85
80 – – 1.8512E�02 1.00 1.2782E�04 2.94
100 – – 1.4809E�02 1.00 6.5848E�05 2.97

P2

40 – – 1.0467E�05 – 3.6493E�06 –
60 – – 3.0913E�06 3.01 4.8281E�07 4.99
80 – – 1.3028E�06 3.00 1.1479E�07 4.99
100 – – 6.6672E�07 3.00 3.7663E�08 4.99

P3

40 3.3018E�02 – 2.6648E�07 – 5.3993E�08 –
60 2.2017E�02 1.00 2.6427E�08 5.70 8.0352E�10 10.98
80 1.6514E�02 1.00 8.1800E�09 4.08 1.8797E�11 13.05

Table 4.9
The L2-errors for the fourth derivative of the discontinuous Galerkin approximation as well as post-processed derivatives for the variable coefficient equation
with sine initial conditions. @4

x ðK H uhÞ represents the derivative of the post-processed solution, and eK � @4
huh represents derivative post-processing using

higher-order splines.

Mesh @4
x uh @4

x ðK H uhÞ eK � @4
huh

L2-error Order L2-error Order L2-error Order

One-dimensional variable coefficient equation
Fourth derivatives

P1

40 – – – – 3.4210E�03 –
60 – – – – 1.1215E�03 2.75
80 – – – – 4.8709E�04 2.90
100 – – – – 2.5210E�04 2.95

P2

40 – – 7.7743E�04 2.00 1.8014E�06 4.76
60 – – 3.4533E�04 2.00 2.5066E�07 4.86
80 – – 1.9421E�04 2.00 6.3585E�08 4.77
100 – – 1.2428E�04 2.00 2.2566E�08 4.64

P3

40 – – 2.6655E�07 – 5.5240E�08 –
60 – – 2.6427E�08 5.70 8.0352E�10 10.43
80 – – 8.1800E�09 4.08 1.8797E�11 13.05
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4.1. Linear convection equation

In the first example we investigate the linear convection equation with a periodic initial condition,
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calculated at T ¼ 12:5. We present the L2-error results for the first four derivatives in Tables 4.1–4.4 for the discontinuous
Galerkin approximation, directly taking the derivative of the post-process solution, and the approach using higher-order
B-splines convolved with a finite-difference approximation to the derivative of the discontinuous Galerkin solution. Addi-
tionally, to examine the effect of polynomial order we present the results for P1;P2; and P3-polynomials. Notice, the DG
method by itself gives kþ 1� a order of accuracy for the ath-derivative. But, for both the derivative methods, the order
of accuracy improves to 2kþ 1 for the first derivative. For the second derivative, the method of Thomée using higher-order
B-splines still maintains the 2kþ 1 order of accuracy, while the second derivative of the post-processed solution has
X

|∂
x3 u
-∂
x3 K

h*
u h
|

2 4 6
10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

X

|∂
x3 u
-K

h∂
h3 u

h|

2 4 6
10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

N=40
N=60
N=80
N=100

Fig. 4.7. Pointwise errors for the post-processed third derivatives for P2-polynomial approximation to the variable coefficient equation with sine initial
conditions.
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decreased by one order. This loss in accuracy for the first method also occurs for the third and fourth derivatives, while the
method of Thomée continues to maintain the 2kþ 1 accuracy. Additionally, there is significant improvement in the magni-
tude of the errors, with both methods being competitive with each other. In Figs. 4.1–4.4, we can see the corresponding plots
of the pointwise errors in log scale for the first four derivatives of the quadratic approximation for the different derivative
post-processing techniques. For the first derivative, we can see that directly taking the derivative of the post-processed solu-
tion leaves some oscillations, but the magnitude of the errors is improved over filtering using the higher-order B-splines. For
the consecutive derivatives, the oscillations remain in the derivative of the post-processed solution, but are filtered out when
we use higher-order B-splines. This is because of the smoothness of the kernel used in the first instance, which is Ck�1.

4.2. Approximation results using P4-polynomials

In Table 4.5, we present the results for the projection of
Table 4
The L2-
dimens
splines.

Mes

One-
First

P1

40
60
80
100

P2

40
60
80
100

P3

40
60
80
100

Table 4
The L2-
one-dim
order sp

Mes

One-
Seco

P1

40
60
80
100

P2

40
60
80
100

P3

40
60
80
100
uðxÞ ¼ sinðxÞ; x 2 ð0;2pÞ ð4:1Þ
.10
errors for the first derivative of the discontinuous Galerkin approximation as well as post-processed derivatives for the wave equation written as a one-
ional system. @xðK H uhÞ represents the derivative of the post-processed solution, and eK � @huh represents derivative post-processing using higher-order

h @xuh @xðK H uhÞ eK � @huh

L2-error Order L2-error Order L2-error Order

dimensional system
derivatives

2.6131E�02 – 3.4020E�04 – 4.2809E�04 –
1.7439E�02 1.00 1.0062E�04 3.00 1.2570E�04 3.02
1.3084E�02 1.00 4.2403E�05 3.00 5.2768E�05 3.02
1.0469E�02 1.00 2.1695E�05 3.00 2.6935E�05 3.01

6.1658E�04 – 1.0895E�07 – 1.7530E�06 –
2.7410E�04 2.00 1.3434E�08 5.16 2.3140E�07 4.99
1.5420E�04 2.00 3.1140E�09 5.08 5.4951E�08 5.00
9.8690E�05 2.00 1.0182E�09 5.01 1.8012E�08 5.00

9.2248E�06 – 2.0571E�10 – 1.3433E�08 –
2.7338E�06 3.00 8.5214E�12 7.85 7.9027E�10 6.99
1.1534E�06 3.00 9.7084E�13 7.55 1.0568E�10 6.99
5.9056E�07 3.00 2.0982E�13 6.86 2.2182E�11 7.00

.11
errors for the second derivative of the discontinuous Galerkin approximation as well as post-processed derivatives for the wave equation written as a

ensional system. @2
x ðK H uhÞ represents the derivative of the post-processed solution, and eK � @2

huh represents derivative post-processing using higher-
lines.

h @2
x uh @2

x ðK H uhÞ eK � @2
huh

L2-error Order L2-error Order L2-error Order

dimensional system
nd derivatives

5.0000E�01 – 8.2190E�04 – 3.4527E�04 –
5.0000E�01 – 3.4807E�04 2.12 1.0159E�04 3.02
5.0000E�01 – 1.9229E�04 2.06 4.2696E�05 3.01
5.0000E�01 – 1.2201E�04 2.04 2.1810E�05 3.01

2.3984E�02 – 2.3400E�07 – 1.4447E�07 –
1.5993E�02 1.00 4.3509E�08 4.15 1.6560E�08 5.34
1.1996E�02 1.00 1.3523E�08 4.06 3.6702E�09 5.24
9.5971E�03 1.00 5.4996E�09 4.03 1.1638E�09 5.15

6.0175E�04 – 2.0783E�10 – 4.6085E�10 –
2.6750E�04 2.00 8.9091E�12 7.77 1.8534E�11 7.93
1.5048E�04 2.00 1.0755E�12 7.35 1.9753E�12 7.78
9.6312E�05 2.00 2.4237E�13 6.68 3.7849E�13 7.40
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onto a piecewise P4-polynomial basis. This is so that we may simulate the results obtained for a discontinuous Galerkin
method. The reasons for this are twofold. First, we would like to study the behavior of a piecewise P4-polynomial basis,
but secondly the cfl number required to run numerical simulations for such a higher-order method that will allow us to
see the accuracy enhancing capabilities is prohibitively expensive. In Table 4.5, we see that the previous results extend to
this polynomial basis. That is, taking the derivative of the post-processed solution, reduces the order of accuracy. However,
using higher-order B-splines maintains the order of accuracy to 2kþ 1 for any order derivative.

4.3. Variable coefficient equation

Next, we consider the case with a variable coefficient,
Table 4
The L2-e
dimens
splines.

Mesh

One-
Third

P1

40
60
80
100

P2

40
60
80
100

P3

40
60
80
100

Table 4
The L2-
one-dim
order sp

Mesh

One-
Four

P1

40
60
80
100

P2

40
60
80
100

P3

40
60
80
100
ut þ ðaðx; tÞuÞx ¼ f ðx; tÞ; x 2 ð0;2pÞ � ð0; TÞ;
uðx;0Þ ¼ sinðxÞ;
uð0; tÞ ¼ uð2p; tÞ;
.12
rrors for the third derivative of the discontinuous Galerkin approximation as well as post-processed derivatives for the wave equation written as a one-

ional system. @3
x ðK H uhÞ represents the derivative of the post-processed solution, and eK � @3

huh represents derivative post-processing using higher-order

@3
x uh @3

x ðK H uhÞ eK � @3
huh

L2-error Order L2-error Order L2-error Order

dimensional system
derivatives

– – 2.6131E�02 – 4.8452E�04 3.03
– – 1.7439E�02 1.00 1.4200E�04 3.03
– – 1.3084E�02 1.00 5.9552E�05 3.02
– – 1.0469E�02 1.00 3.0377E�05 3.02

– – 7.3632E�06 – 2.5906E�06 –
– – 2.1810E�06 3.00 3.4233E�07 4.99
– – 9.2005E�07 3.00 8.1328E�08 5.00
– – 4.7105E�07 3.00 2.6662E�08 5.00

2.3348E�02 – 1.3832E�09 – 2.1004E�08 –
1.5568E�02 1.00 1.8031E�10 5.03 1.2368E�09 6.99
1.1677E�02 1.00 4.2750E�11 5.00 1.6544E�10 6.99
9.3420E�03 1.00 1.4006E�11 5.00 3.4731E�11 7.00

.13
errors for the fourth derivative of the discontinuous Galerkin approximation as well as post-processed derivatives for the wave equation written as a

ensional system. @4
x ðK H uhÞ represents the derivative of the post-processed solution, and eK � @4

huh represents derivative post-processing using higher-
lines.

@4
x uh @4

x ðK H uhÞ eK � @4
huh

L2-error Order L2-error Order L2-error Order

dimensional system
th derivatives

– – – – 3.5282E�04 –
– – – – 1.0309E�04 3.03
– – – – 4.3171E�05 3.03
– – – – 2.2004E�05 3.02

– – 5.4888E�04 – 2.0026E�07 –
– – 2.4400E�04 2.00 2.1484E�08 5.51
– – 1.3726E�04 2.00 4.5483E�09 5.40
– – 8.7848E�05 2.00 1.3942E�09 5.30

– – 9.1297E�08 – 8.8603E�10 –
– – 1.8036E�08 4.00 3.5240E�11 7.95
– – 5.7068E�09 4.00 3.6519E�12 7.88
– – 2.3375E�09 4.00 6.6010E�13 7.66
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where aðx; tÞ ¼ 2þ sinðxþ tÞ and the forcing function, f ðx; tÞ, is taken such that the exact solution is sin ðx� tÞ. We calculate
the L2-errors in the derivative at final time T ¼ 12:5 and use periodic boundary conditions. The results that we obtain are
much the same as for the linear transport equation and can be seen in Tables 4.6–4.9 and Figs. 4.5–4.8. That is, both methods
give Oðh2kþ1Þ in the first derivative. Thomée’s method of higher-order B-splines is able to maintain this order of accuracy for
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Fig. 4.9. Pointwise errors for the post-processed first derivatives of the u-component for P2-polynomial approximation to the wave equation written as a
one-dimensional system. The errors displayed are similar to those for the v-component.
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Fig. 4.10. Pointwise errors for the post-processed second derivatives of the u-component for P2-polynomial approximation to the wave equation written as
a one-dimensional system. The errors displayed are similar to those for the v-component.



the second through fourth derivatives while the order of accuracy is decreased by one for directly taking the derivative of the
post-processed solution. Again, the magnitude of the errors for both methods are comparable. Examining the quadratic error
plots (Figs. 4.5–4.8) shows that the oscillations in the error are more exaggerated for the derivative of the post-processed
solution than for using higher-order B-splines.
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Fig. 4.11. Pointwise errors for the post-processed third derivatives of the u-component for P2-polynomial approximation to the wave equation written as a
one-dimensional system. The errors displayed are similar to those for the v-component.

X

|∂
x4 u
-∂
x4 K

h*
u h
|

2 4 6
10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

X

|∂
x4 u
-K

h∂
h4 u

h|

2 4 6
10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3
N=40
N=60
N=80
N=100

Fig.

4

 1

2

.

Pointwise

errors

for

th

e

post-

processed

fou

rth

derivatives

of

th

e

u

-

component

for

P2

-

polynomial

approx

imation

to

th

e

wave

equ

ation

written

as

a

one-

dimensional

system.

Th

e

errors

displayedare

similar

to

th

ose

for

th

ev-

component.

J.K

.

Ryan,

B.

Cockbu

rn/

Jou

rnal

of

Compu

tational

Ph

ysics

2

2

8

(2

0

0

9

)

8

6

4

2

�l
8

6

6

4

8

6

5

9



8660 J.K. Ryan, B. Cockburn / Journal of Computational Physics 228 (2009) 8642–8664
4.4. One-dimensional system

The last one-dimensional example that we consider is the wave equation written as a system,
Table 4
The L2-
coeffici
process

Mes

Two-
First

P1

40
60
80
100

P2

40
60
80
100

P3

40
60
80
100

Table 4
The L2-
variable
derivati

Mes

Two-
Seco

P1

40
60
80
100

P2

40
60
80
100

P3

40
60
80
100
u

v

� �
t

þ
0 1
1 0

� �
u

v

� �
x

¼
0
0

� �
ð4:2Þ
with uðx;0Þ ¼ sinðxÞ;vðx;0Þ ¼ 0; and periodic boundary conditions. Again, the derivative errors are calculated at T ¼ 12:5 and
x 2 ð0;2pÞ. The error results can be found in Tables 4.10–4.13 and Figs. 4.9–4.12. Results for the L2-error agree with our pre-
vious results obtained for the scalar equations. The plots are shown for the u-component. Similar results are obtained for the
v-component.
.14
errors for the first derivative in x of the discontinuous Galerkin approximation as well as post-processed derivatives for the two-dimensional variable
ent equation with sine initial conditions. @xðK H uhÞ represents the derivative of the post-processed solution, and eK � @huh represents derivative post-
ing with respect to the first partial derivative in x using higher-order splines.

h @xuh @xðK H uhÞ eK � @huh

L2-error Order L2-error Order L2-error Order

dimensional variable coefficient equation
derivatives in x

4.8887E�02 – 2.8224E�04 – 3.6934E�04 –
3.2621E�02 1.00 8.7580E�05 2.89 1.1467E�04 2.88
2.4474E�02 1.00 3.7717E�05 2.93 4.9289E�05 2.94
1.9583E�02 1.00 1.9514E�05 2.95 2.5475E�05 2.96

2.0024E�03 – 4.8182E�07 – 2.4398E�06 –
8.8964E�04 2.00 6.4605E�08 4.96 3.2287E�07 4.99
5.0034E�04 2.00 1.5492E�08 4.96 7.6770E�08 4.99
3.2019E�04 2.00 5.1204E�09 4.96 2.5183E�08 5.00

5.6774E�05 – 6.7039E�10 – 1.8988E�08 –
1.6833E�05 3.00 3.2102E�11 7.50 1.1163E�09 6.99
7.1036E�06 3.00 3.9625E�12 7.27 1.4923E�10 6.99
3.6375E�06 3.00 8.2405E�13 7.04 3.1313E�11 7.00

.15
errors for the second derivative in x, @xx , of the discontinuous Galerkin approximation as well as post-processed derivatives for the two-dimensional

coefficient equation with sine initial conditions. @xxðK H uhÞ represents the derivative of the post-processed solution, and eK � @hxx uh represents
ve post-processing using higher-order splines.

h @xxuh @xxðK H uhÞ eK � @hxx
uh

L2-error Order L2-error Order L2-error Order

dimensional variable coefficient equation
nd derivative @xx

7.0711E�01 – 1.2381E�03 – 6.1700E�04 –
7.0711E�01 – 5.0685E�04 2.20 1.8005E�04 3.04
7.0711E�01 – 2.7615E�04 2.11 7.4309E�05 3.08
7.0711E�01 – 1.7417E�04 2.07 3.7588E�05 3.05

4.6686E�02 – 1.1471E�06 – 1.0818E�06 –
3.1126E�02 1.00 1.5734E�07 4.90 1.4200E�07 5.01
2.3344E�02 1.00 3.9532E�08 4.80 3.3849E�08 4.98
1.8675E�02 1.00 1.3817E�08 4.71 1.1155E�08 4.97

1.9107E�03 – 1.1233E�09 – 1.3035E�09 –
8.4957E�04 2.00 6.2451E�11 7.13 6.6438E�11 7.34
4.7797E�04 2.00 8.3344E�12 7.00 8.5007E�12 7.15
3.0593E�04 2.00 1.8094E�12 6.85 1.8048E�12 6.95
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4.5. Two-dimensional variable coefficient equation

In this example, we consider a two-dimensional variable coefficient equation,
Table 4
The L2-
coefficie
process

Mesh

Two-
Cross

P1

40
60
80
100

P2

40
60
80
100

P3

40
60
80
100

Table 4
The firs

Mesh

Two-
First

P1

40
60
80
100

P2

40
60
80
100

P3

40
60
80
100
ut þ ðauÞx þ ðauÞy ¼ f ðx; y; tÞ; ½x; y� 2 ½0;2p� � ½0;2p�; T ¼ 12:5; ð4:3Þ
similar to the one-dimensional example. We take the variable coefficient function aðx; yÞ ¼ 2þ sinðxþ yÞ, and set the forcing
function so that our solution is uðx; y; tÞ ¼ sinðxþ y� 2tÞ and use periodic boundary conditions. In Table 4.14, the results for
the first derivative in x is given, the first derivative in y is similar. In the first derivative, we are able to recover 2kþ 1 order of
accuracy for both methods. It also appears that we are able to recover this 2kþ 1 for the second derivatives, which is better
than predicted (see Table 4.15 for the second derivative in x, and Table 4.16 for the cross derivative).
.16
errors for the cross derivative, @xy , of the discontinuous Galerkin approximation as well as post-processed derivatives for the two-dimensional variable
nt equation with sine initial conditions. @xyðK H uhÞ represents the derivative of the post-processed solution, and eK � @hxy uh represents derivative post-

ing using higher-order splines.

@xyuh @xyðK H uhÞ eK � @hxy
uh

L2-error Order L2-error Order L2-error Order

dimensional variable coefficient equation
derivative @xy

7.0711E�01 – 6.2079E�04 – 8.5194E�04 –
7.0711E�01 – 1.8078E�04 3.04 2.5313E�04 2.99
7.0711E�01 – 7.4565E�05 3.08 1.0597E�04 3.03
7.0711E�01 – 3.7705E�05 3.06 5.4016E�05 3.02

4.8942E�02 – 1.0838E�06 – 4.9765E�06 –
3.2643E�02 1.00 1.4230E�07 5.01 6.5789E�07 4.99
2.4486E�02 1.00 3.3914E�08 4.99 1.5638E�07 4.99
1.9590E�02 1.00 1.1174E�08 4.98 5.1290E�08 5.00

2.0416E�03 – 1.0955E�09 – 3.7968E�08 –
9.0805E�04 2.00 6.0582E�11 7.14 2.2337E�09 6.99
5.1092E�04 2.00 8.0686E�12 7.01 2.9870E�10 6.99
3.2703E�04 2.00 1.7521E�12 6.84 6.2689E�11 7.00

.17
t derivative in x for the u-component of the wave equation written as a two-dimensional system.

@xuh @xðK H uhÞ eK � @huh

L2-error Order L2-error Order L2-error Order

dimensional system
derivatives in x

3.1958E�02 – 2.4550E�03 – 2.4781E�03 –
2.1311E�02 1.00 7.3337E�04 2.98 7.3895E�04 2.98
1.5996E�02 1.00 3.1028E�04 2.99 3.1236E�04 2.99
1.2804E�02 1.00 1.5908E�04 2.99 1.6006E�04 3.00

1.1895E�03 – 1.6128E�06 – 2.3517E�06 –
5.3049E�04 1.99 2.1045E�07 5.02 3.0589E�07 5.03
2.9885E�04 1.99 4.9715E�08 5.02 7.2120E�08 5.02
1.9142E�04 2.00 1.6251E�08 5.01 2.3541E�08 5.02

3.8416E�05 – 1.1938E�09 – 1.2561E�08 –
1.1279E�05 3.02 6.4091E�11 7.21 7.3711E�10 6.99
4.7333E�06 3.02 8.1903E�12 7.15 9.8455E�11 7.00
2.4153E�06 3.02 1.6836E�12 7.09 2.0652E�11 7.00
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4.6. Two-dimensional system

Lastly, we consider the derivatives of the solution to the second-order wave equation written as a first order system:
Table 4
The L2-
variable
post-pr

Mes

Two-
Seco

P1

40
60
80
100

P2

40
60
80
100

P3

40
60
80
100

Table 4
The L2-
coeffici
process

Mes

Two-
Cros

P1

40
60
80
100

P2

40
60
80
100

P3

40
60
80
100
u

v

� �
t

þ
�1 0
0 1

� �
u

v

� �
x

þ
0 �1
�1 0

� �
u

v

� �
y

¼
0
0

� �
ð4:4Þ
with initial conditions
uðx; y;0Þ ¼ 1
2
ffiffiffi
2
p sinðxþ yÞ � cosðxþ yÞð Þ;

vðx; y; 0Þ ¼ 1
2
ffiffiffi
2
p ð

ffiffiffi
2
p
� 1Þ sinðxþ yÞ þ ð1þ

ffiffiffi
2
p
Þ cosðxþ yÞ

� �
;

.18
errors for the second derivative in x, @xx , of the discontinuous Galerkin approximation as well as post-processed derivatives for the two-dimensional

coefficient equation with sine initial conditions. @2
x ðK H uhÞ represents the derivative of the post-processed solution, and eK � @2

hx
uh represents derivative

ocessing using higher-order splines.

h @2
x uh @2

x ðK H uhÞ eK � @2
hx

uh

L2-error Order L2-error Order L2-error Order

dimensional system
nd derivatives in x

4.6312E�01 – 2.5462E�03 – 2.4600E�03 –
4.6312E�01 – 7.9388E�04 2.87 7.3436E�04 2.98
4.6312E�01 – 3.5470E�04 2.80 3.1059E�04 2.99
4.6312E�01 – 1.9358E�04 2.71 1.5921E�04 2.99

3.0435E�02 – 1.6150E�06 – 1.6458E�06 –
2.0328E�02 1.00 2.1203E�07 5.00 2.1336E�07 5.04
1.5259E�02 1.00 5.0586E�08 4.98 5.0233E�08 5.03
1.2212E�02 1.00 1.6760E�08 4.95 1.6387E�08 5.02

1.2904E�03 – 1.1942E�09 – 1.4301E�09 –
5.7109E�04 2.01 6.4139E�11 7.21 7.3366E�11 7.33
3.2047E�04 2.01 8.2018E�12 7.15 9.1206E�12 7.25
2.0479E�04 2.01 1.6874E�12 7.09 1.8398E�12 7.17

.19
errors for the cross derivative, @xy , of the discontinuous Galerkin approximation as well as post-processed derivatives for the two-dimensional variable
ent equation with sine initial conditions. @xyðK H uhÞ represents the derivative of the post-processed solution, and eK � @hxy uh represents derivative post-
ing using higher-order splines.

h @xyuh @xyðK H uhÞ eK � @hxy
uh

L2-error Order L2-error Order L2-error Order

dimensional system
s derivative

4.6312E�01 – 2.4551E�03 – 2.5208E�03 –
4.6312E�01 – 7.3338E�04 2.98 7.5037E�04 2.99
4.6312E�01 – 3.1029E�04 2.99 3.1692E�04 3.00
4.6312E�01 – 1.5908E�04 2.99 1.6231E�04 3.00

2.9822E�02 – 1.6129E�06 – 3.6976E�06 –
1.9903E�02 1.00 2.1045E�07 5.02 4.8372E�07 5.02
1.4934E�02 1.00 4.9715E�08 5.02 1.1436E�07 5.01
1.1950E�02 1.00 1.6251E�08 5.01 3.7384E�08 5.01

1.3129E�03 – 1.1938E�09 – 2.4962E�08 –
5.8379E�04 2.00 6.4091E�11 7.21 1.4673E�09 6.99
3.2830E�04 2.00 8.1903E�12 7.15 1.9614E�10 7.00
2.1005E�04 2.00 1.6836E�12 7.09 4.1158E�11 7.00
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with periodic boundary conditions, ½x; y� 2 ½0;2p� � ½0;2p�, and final time T ¼ 12:5. The results are presented in Table 4.17
(first derivative in x), Table 4.18 (second derivative in x), and Table 4.19 (cross derivative). For this two-dimensional system
we again are able to obtain the Oðh2kþ1Þ accuracy using higher-order B-splines and better then predicted accuracy for the
method of taking the derivative of the post-processed solution.

4.7. Remarks about derivative post-processing choice

In the previous section, we can see clear distinctions in the numerical results between the two types of derivative post-
processing. An obvious result from the numerical examples is that often, especially for the first derivative, the actual L2-error
for the derivative of the post-processed solution is better than that obtained when using higher order B-splines, while the
higher-order B-splines consistently maintain their 2k + 1 convergence rate. For second through fourth derivatives, there is
more of a distinction between the results, with the higher order B-spline kernel performing better in terms of convergence
rate and L2-error for P1- and P2-polynomials. This is less clear for P3. Another important aspect to note is that the oscillations
in the error are re-introduced with the higher derivatives for the first method. This is because the kernel used is only Ck�1.
Therefore, when a better L2-error is desired, it is logical to implement the first method for the first derivative and the method
of Thomée for successive derivatives. However, when smoothness of the solution is required, as in filtering for visualization,
it is necessary to implement the method using higher order B-splines.

5. Concluding remarks

In this paper, we have introduced two options for post-processing of derivatives for discontinuous Galerkin solutions.
Both methods provide higher-order derivative information than the solution itself and can easily be extended to higher
dimensions.

In the first method, we obtain the derivative of the post-processed solution itself. In this manner, we can only guarantee
Oðh2kþ2�aÞ accuracy for the ath-derivative. Additionally, the errors are slightly better than using higher-order splines for the
convolution kernel. However, by implementing this derivative post-processing method, we do re-introduce oscillations back
into the error.

In the second method, we extend the results of Thomée to discontinuous Galerkin methods. This requires using a higher-
order B-spline convolution kernel than the post-processed solution as well as the divided differences of the discontinuous
Galerkin solution. This allows us to provably maintain Oðh2kþ1Þ accuracy for any derivative. Additionally, oscillations in
the derivative errors are filtered out.

Both techniques are effective in improving the errors in the derivatives. The choice of the technique depends on whether
higher-order accuracy or smoothness of the solution is required. Further work will be to extend derivative post-processing to
non-uniform quadrilateral meshes. Additionally, further investigation of computational efficiency should also be performed.
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